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EOSC 579 - Chapter 1 - Stratification

Lecture 1 : Stratification

For much of what you considered in E512, you took the density to be homogeneous. In

the real ocean, the density increases with depth. Often, near the surface and bottom there

are nearly homogeneous mixed layers and in the interior there are one or more regions of

sharp density gradients (pycnoclines). To be mathematically tractable we usually treat the

stratification as changing linearly (as we will do today) or as a series of stacked homogeneous

layers. Near the end of E512, you developed the Quasi-geostrophic equation for a stratified

fluid. Let’s review that as a way to bring it back to mind, and a way to introduce my

notation. As its a review, I will skip some details (as noted below).

We want to form a vorticity equation starting from the full-stratified equations.

We are thinking about the interior of ocean so we will neglect friction. We are including

stratification and we want to further divide the variable density ρ′ into two components:

ρ∗(z) a background stratification and ρ̃(x, y, z, t) the perturbations around that density. So

ρ′ = ρ∗ + ρ̃ and |ρ∗| ≫ |ρ̃|. Also note that ∂p∗/∂z = −ρ∗g is independent of (x, y) and so

does not contribute to horizontal pressure gradients.

Thus our equations are:

Dhu

Dt
− fv =

−1

ρo

∂p

∂x
(1a)

Dhv

Dt
+ fu =

−1

ρo

∂p

∂y
(1b)

∂p̃

∂z
= −ρ̃g (1c)

∇ · u⃗ = 0 (1d)

∂ρ̃

∂t
+ u⃗h · ∇ρ̃+ w

∂ρ∗
∂z

+ w
∂ρ̃

∂z
= 0 (1e)

where in (1e) the last term is much smaller than the second last and so can be neglected.

Let N2 = −g/ρo∂ρ∗/∂z where N is the Brunt-Väisälä frequency. Then (1e) becomes:

Dhρ̃

Dt
=
ρoN

2

g
w (2)
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We now form a vorticity equation from (1a) and (1b). To do so we take ∂
∂y

of (1b) and

subtract ∂
∂x

of (1a). Group terms we get:

Dh

Dt
(ζ + f) +

(
∂u

∂x
+
∂v

∂y

)
(ζ + f) = 0 (3)

Consider the scale for ζ = U/L compared to f . O(ζ/f) = Ro. Assuming Ro ≪ 1 we can

neglect ζ in favour of f in the second term (not the derivatives).

We now consider conservation of volume (1d) to give that

(
∂u

∂x
+
∂v

∂y

)
= −∂w

∂z
(4)

Differentiating (2) with respect to z we get:

∂w

∂z
=

g

ρo

∂

∂z

1

N2

Dhρ̃

Dt
(5)

But Dh/Dt consists of derivatives with respect to x, y, t and not z so reverse order of differ-

entiation noting that N2 is only a function of z.

∂w

∂z
=

g

ρo

Dh

Dt

[
∂

∂z

(
ρ̃

N2

)]
(6)

But from (1c) ρ̃ = −∂p̃/∂z/g so:

∂w

∂z
= − 1

ρo

Dh

Dt

[
∂

∂z

(
1

N2

∂p̃

∂z

)]
(7)

Substituting into (3) above we get:

Dh

Dt
(ζ + f) +

f

ρo

Dh

Dt

[
∂

∂z

(
1

N2

∂p̃

∂z

)]
= 0 (8)

Making a Quasi-geostrophic approximation, we can approximate ζ in this equation by
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ζg = ∂vg/∂x− ∂ug/∂y. And approximate Dh/Dt = Dg/Dt.
1 The geostrophic velocities are:

vg =
1

ρofo

∂p̃

∂x
, ug = − 1

ρofo

∂p̃

∂y
(9)

where fo is the constant middle value for f and so

ζg =
1

ρofo
∇2p̃ (10)

and remembering that Dgf/Dt = βvg we get a single equation for the pressure:

Dg

Dt
∇2p̃+

Dg

Dt

[
∂

∂z

(
f 2
o

N2

∂p̃

∂z

)]
+ β

∂p̃

∂x
= 0 (11)

Note that we can write this in the form

∂q

∂t
+ J (ψ, q) = 0 (12)

q = ∇2ψ + βy +
∂

∂z

(
f 2
o

N2

∂ψ

∂z

)
(13)

where ψ = ρofp̃.

The stratified quasi-geostrophic equation is separable. Let p̃ = Π(z)Q(x, y, t) and sub-

stitute:

Π
Dg

Dt
∇2Q+

DgQ

Dt

[
∂

∂z

(
f 2
o

N2

∂Π

∂z

)]
+Πβ

∂Q

∂x
= 0 (14)

Divide through by ΠDgQ/Dt and move second term to RHS.

Dg

Dt
∇2Q+ β ∂Q

∂x
DgQ
Dt

= − 1

Π

[
∂

∂z

(
f 2
o

N2

∂Π

∂z

)]
(15)

Now this is hardly a simple equation BUT the LHS is not a function of z and the RHS is

only a function of z (not x, y, t). Now if z varies the LHS does not vary and thus the RHS

cannot vary either: it must be equal to a constant. Thus both side must equal a constant.

1One should do this properly scaling the terms but I refer you to your detailed QG derivation in EOSC
512 or see Cushman-Roisin
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This constant has units of one over length squared so set it to 1/a2.

So then we have two equations. A horizontal and a vertical equation: linked only by the

constant a.

Dg

Dt

(
∇2Q− Q

a2

)
+ β

∂Q

∂x
= 0 (16a)

∂

∂z

(
f 2
o

N2

∂Π

∂z

)
+

Π

a2
= 0 (16b)

Vertical Equation (16b)

In order to solve the vertical equation we will need boundary conditions at the top and

bottom of the domain.

Boundary condition at the bottom of the domain : no flow through the bottom

u⃗H · ∇Hh+ w = 0 where z = −h(x, y) is the bottom.

Boundary condition at the top of the domain : vertical flow makes the surface go up and

down w = Dη/Dt.

Upper Boundary Condition

w = Dη/Dt, z = η (17)

We need to linearize this equation. So Dη/Dt becomes ∂η/∂t and we can evaluate at z = 0

the undisturbed surface height, rather than at z = η.

w =
∂η

∂t
, z = 0 (18)

Right at the surface the pressure is simply due to the deflection of the surface. So p = ρogη

and thus

w =
1

ρog

∂p

∂t
, z = 0 (19)

and remember from (2) wρoN
2/g = −Dhρ̃/Dt which linearized is w = g/(ρoN

2)∂ρ̃/∂t. Using

the hydrostatic equation gives

w = − 1

ρoN2

∂2p

dzdt
(20)
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Combining and writing p = QΠ gives

N2∂Q

∂t
Π = −g∂Q

∂t

∂Π

∂z
, z = 0 (21)

or

N2Π = −g∂Π
∂z

, z = 0 (22)

Lower Boundary Condition

u⃗h · ∇hh+ w = 0, z = −h (23)

We will use the quasi-geostrophic equations because it is easier (but it can be done for full

linear swe). Substitute for u and v using the geostrophic assumption and for w from (20):

− 1

ρof

∂p

∂y

∂h

∂x
+

1

ρo
f
∂p

∂x

∂h

∂y
− 1

ρoN2

∂2p

dzdt
, z = −h (24)

Write p = QΠ

N2Π

(
∂Q

∂y

∂h

∂x
− ∂Q

∂x

∂h

∂y

)
+ f

∂Π

∂z

∂Q

∂t
= 0, z = −h (25)

This equation poses a problem. Q does not simply factor out. We have a mixture of Q

and Π and a mixed evaluation (at h which varies with x and y). The only way out of this

dilemma is to assume h = ho a constant → the bottom is flat. Then

f
∂Π

∂z

∂Q

∂t
= 0, z = −ho (26)

or

∂Π

∂z
= 0, z = −ho (27)

The vertical and horizontal separation for the Quasi-geostrophic and the Shallow Water

Equations only works if the fluid has constant depth.
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