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EOSC 579 - Chapter 2 - Internal Waves

Lecture 1 : Introduction and Dispersion Relation

1.1 Learning Goals

As the end of this lecture you will be able to:

• describe the internal wave “climate” of the world oceans

• define the term “Garrett Munk” spectrum

• explain which terms should be kept for a simple set of internal wave equations

• derive the dispersion relation for internal waves

This lecture is based on a set of notes written by R. Pawlowicz and all san serif text is

almost directly quoted

1.2 Description of Internal Wave “Climate”

As soon as people began making observations of temperature and salinity in the ocean, they

discovered that large amplitude fluctuations were omnipresent.

In the 1940’s and 1950’s, time series began to show that these fluctuations spanned a large

range of frequencies from f to N and that even at the lowest frequencies there was very little

coherence between even closely spaced sites.

In the 1970’s the idea of a Spectrum was applied, and an empirical form for this spectrum

was developed by Garrett and Munk which seemed to describe the ocean (to within a factor of

two or so).

Implications

1. Internal waves are somehow saturating the ocean

2. Dissipation much be weak

3. Interesting places are those that differ from the Garrett-Munk spectrum, because they might

indicate generation and/or dissipation. There are four significant regions.

(a) Arctic Ocean (very low)
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(b) near bumps and coastlines

(c) high shear regions

(d) near the equator

1.3 Derivation, Linear Internal Waves

Go back to the full equations, assume Boussinesq but do not assume hydrostative. Assume

linear flows (that is, neglect advection terms) and assume inviscid.
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Assume each of the five variable act as a wave:

u = uo exp[i(kx+ ℓy +mz − ωt)]

and substitute. Note Ro is the wave amplitude in density.

−iωuo − fvo = − ik

ρo
po (2a)

−iωvo + fuo = − iℓ

ρo
po (2b)

−iωwo = −im

ρo
po −Rog (2c)

−iωRo − woρoN
2 = 0 (2d)
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ikuo + iℓvo + imwo = 0 (2e)

Which, if we assumeN is constant, is a set of five linear, homogeneous, algebraic equations

in five unknowns. This system only has a non-trivial solution if the “matrix” has a zero

determinant. Which after much arthimetic gives:

N2 − ω2

ω2 − f 2
=

m2

k2 + ℓ2

This is a very peculiar dispersion relation. Consider a wave with wave number k⃗ =

(K,L,M). If I reduce the wavelength of this wave by a factor of 2, by increasing all the

wavenumbers by a factor of 2 (2K, 2L, 2M), the frequency does not change. Frequency is

not a function of the wavelength, but only of the wave direction!

Now m is the vertical wavenumber so the left-hand side is measure of the angle of the

wave with the vertical (Figure 1.1).

Figure 1.1 Wavenumber space, showing the relation of θ to m and k, ℓ.

m

k

θ

So

tan θ =
(k2 + ℓ2)1/2

m
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And in terms of this angle we can write

ω2 = N2 sin2 θ + f 2 cos2 θ

Which clearly illustrates two things:

1. If we know the stratification, Coriolis parameter and frequency, then the direction of

phase propagation to the vertical is given

2. Both the Coriolis frequency and the stratification play a role. The the Coriolis fre-

quency is more important as the waves propagate more vertically and the stratification

is more important as the waves propagate more horizontally.

1.4 More Properties from the Dispersion Relation

1. Consider (2e):

ku+ ℓv +mw = 0

which means k⃗ · u⃗ = 0 or the flow is perpendicular to the wave-vector!

2. Group velocity, the direction of energy propagation, is the gradient of omega in k⃗ space.

Looking back at Figure 1.1 we can see that the gradient is either in the direction of

increasing or decreasing θ. Note that this gradient is perpendicular to k⃗ and therefore

perpendicular to the phase speed. If we plot ω as function of θ we get Figure 1.2.
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Figure 1.2 Wave frequency as a function of wave angle from the vertical.
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So the maximum frequency is when the θ = π/2 or when the wavenumber is horizontal.

So for upward wavenumbersm > 0, greater frequencies are toward the horizontal which

is downward and for downward wavenumber m < 0, greater frequencies are toward the

horizontal which is upward. (Phase speed up, group speed down and vice-versa).

3. Note also from Figure 1.2 that the group speed goes to zero as the wavenumber ap-

proaches either the horizontal or the vertical.

4. Watch them go (Plate 1.1).

Figure 1.1: Internal waves made in a stratified non-rotating tank by oscillating a stick. By Barry
Ruddick and Dave Hebert at Dalhousie http://www.phys.ocean.dal.ca/programs/doubdiff/

pics/iw1.mpeg for more details see http://www.phys.ocean.dal.ca/programs/doubdiff/

demos/IW1-Lowfrequency.html Matlab movie of a packet of internal waves by R. Pawlowicz. On
Canvas Site
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