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EOSC 579 - Chapter 3 - Instability

Lecture 1 : Barotropic Instability

Return to our vorticity equation (eqn 3 in Lecture 1):

Dh

Dt
(ζ + f) +

(
∂u

∂x
+
∂v

∂y

)
(ζ + f) = 0 (1)

We want now to consider a homogeneous, frictionless, flat bottom ocean, so no Ekman

flux, no stretching. Thus the second term is zero. Expanding the first term gives us:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
(ζ + f) = 0 (2)

Consider a steady, mean flow in the x-direction, with no variation in the x-direction,and

with zero y-direction mean flow. This mean flow satisfies the governing equation. Is it

stable?

Lets consider a perturbation flow (u′, v′) with vorticity ζ ′ = ∂v′/∂x− ∂u′/∂y. Our total

flow and vorticity is thus:

u = ū(y) + u′ (3)

v = v′ (4)

ζ = ζ̄ + ζ ′ (5)

= −∂ū
∂y

+ ζ ′ (6)
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Substitute into our equation:

(
∂

∂t
+ ū

∂

∂x

)(
f − ∂ū

∂y

)
(7)

+

(
∂

∂t
+ ū

∂

∂x

)
ζ ′ (8)

+

(
u′
∂

∂x
+ v′

∂

∂y

)(
f − ∂ū

∂y

)
(9)

+

(
u′
∂

∂x
+ v′

∂

∂y

)
ζ ′ = 0 (10)

where we have split the equation up into 4 parts:

1. (Time rate of change and advection by the mean flow) of (planetary vorticity and mean

flow vorticity)

2. (Time rate of change and advection by the mean flow) of (perturbation vorticity)

3. (Advection by the perturbation flow) of (planetary vorticity and mean flow vorticity)

4. (Advection by the perturbation flow) of (perturbation vorticity)

The first term is zero because both the planetary vorticity (f) and the mean flow are

steady and independent of x. This statement is equivalent to stating that the mean flow

satisfies the governing equation.

We will make the weakly nonlinear approximation and assume that the perturbation flow

is small compared to the mean flow. Then we can neglect the fourth term and we are left

with: (
∂

∂t
+ ū

∂

∂x

)
︸ ︷︷ ︸

A

B︷︸︸︷
ζ ′ + v′

∂

∂y︸ ︷︷ ︸
C

D︷ ︸︸ ︷(
βy − ∂ū

∂y

)
= 0 (11)

where A is time-dependence and advection by the mean flow, B is the perturbation vorticity,

C is advection by the perturbation and D is the total vorticity of the mean flow.

In addition, because the fluid is inviscid and homogeneous, we have

∂u′

∂x
+
∂v′

∂y
= 0 (12)
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which means we can use a streamfunction with

∂ψ

∂x
= v′ (13)

−∂ψ
∂y

= u′ (14)

and we note that ∇2ψ′ = ζ ′. So our equation becomes:

(
∂

∂t
+ ū

∂

∂x

)
∇2ψ +

∂ψ

∂x

∂

∂y

(
βy − ∂ū

∂y

)
= 0 (15)

where I have dropped the primes.

1 Example One, No Mean Flow

Assuming ū = 0 then

∂

∂t
∇2ψ + β

∂ψ

∂x
= 0 (16)

which has a solution ψ = ψo exp [i (kx+ ℓy − ωt)] with

ω =
−βk
k2 + ℓ2

(17)

That is, the solution is Rossby waves under a rigid-lid.

2 Example Two, Uniform Mean Flow

Assuming ū = a constant then1

∂

∂t
∇2ψ + ū

∂

∂x
∇2ψ + β

∂ψ

∂x
= 0 (18)

which has a solution ψ = ψo exp [i (kx+ ℓy − ωt)] with

ω − kū =
−βk
k2 + ℓ2

(19)

1last term updated
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c =
ω

k
=

−βk
k2 + ℓ2

+ ū (20)

Now we have a Rossby wave simply advected by the mean flow.

2.1 Example Three, Uniform Shear Flow

Assuming ū = Uy/L over a domain from y = −L to y = L then

(
∂

∂t
+
Uy

L

∂

∂x

)
∇2ψ +

∂ψ

∂x

∂

∂y

(
βy − U

L

)
= 0 (21)

TOO HARD. Assume an f-plane, that is β = 0. then

(
∂

∂t
+
Uy

L

∂

∂x

)
∇2ψ = 0 (22)

which most likely means ∇2ψ = 0. That equation has a solution

ψ = exp [i (kx− ωt)] [A exp(−ky) +B exp(ky)]

where I have chosen the solution to be wavelike in x and exponential in y because the domain

is unlimited in x but confined in y. This form is a solution to equation for any choice of ω

and k. Now lets consider the boundary conditions.

At the two walls, the flow must not be through the wall. Thus

∂ψ

∂x
= 0 at ± L∀x, t (23)

which implies

A exp(−kL) +B exp(kL) = 0 (24)

A exp(kL) +B exp(−kL) = 0 (25)

The only solution is A = B = 0, so there is no wave and no instability.
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2.2 Example Four, Complicated Enough to be Unstable

Assume an f-plane (as β-plane math is too hard), an infinite domain, and

ū = −U, y < −L (26)

ū =
Uy

L
, −L < y < L (27)

ū = U, y > L (28)

We will have ∇2ψ = 0 for all three sections. So for each section we have

ψ = exp [i (kx− ωt)] [A∗ exp(−ky) +B∗ exp(ky)] (29)

Boundary Conditions

1 and 2: Finite Solution .

• y → ∞, ψ finite, B1 = 0

• y → −∞, ψ finite, A3 = 0

3 and 4: v-continuous .

• y = L, v-continuous, A1 exp(−kL) = A2 exp(−kL) +B2 exp(kL)

• y = −L, v-continuous, A2 exp(kL) +B2 exp(−kL) = B3 exp(−kL)

5 and 6: p-continuous .

p-continuous at ±L which implies

∂p′ℓ
∂x

is continuous. Which implies

∂u′

∂t
+ ū

∂u′

∂x
+ v′

∂ū

∂y
− fv′
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is continuous. Substituting (
ū− ω

k

)
∂ψ

∂y
− ∂ū

∂y
ψ

continuous.

Write ω/k as c.

• y = L, p=continuous,

(ū− c)A1(−k) exp(−kL) =

(ū− c) [A2(−k) exp(−kL) +B2k exp(kL)]−
ū

L
[A2 exp(−kL) +B2 exp(kL)]

• y = −L, similarly

The boundary conditions give us four linear homogenous equations in four unknowns:

A1, A2, B2, B3. We could write them as a big matrix:



◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦





A1

A2

B2

B3


=



0

0

0

0


(30)

where I have not written out the entries in the matrix. The only way to have a non-trivial

solution is for the determinant to be zero. That gives:

c2

U2
=

(1− 2kL)2 − exp(−4kL)

(2kL)2
(31)

which we can plot (Figure 1.1).
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Figure 1.1 Solution for the phase speed squared for a weakly nonlinear barotropic instability on

a limited region shear zone. SEA
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So for (1− 2kL)2 > exp(−4kL), c is real and if (1− 2kL)2 < exp(−4kL), c is imaginary.

This gives c imaginary for kL < 0.639.

Write c = cr + ici, if ci is greater than zero (which is true if c is imaginary as one of

the two roots is positive imaginary and one is negative imaginary), then the solution grows

exponentially as

ψ = exp [i (kx− kct)] [A∗ exp(−ky) +B∗ exp(ky)] (32)

= exp [i (kx)] exp (kcit) [A∗ exp(−ky) +B∗ exp(ky)] (33)

So the growth rate is kci and we can plot that (Figure 1.2).
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Figure 1.2 Solution for the phase speed squared for a weakly nonlinear barotropic instability on

a limited region shear zone. SEA
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Barotropic Instability Growth Rate, Simple Shear Flow

Which shows us that the maximum growth rate is for a wave with wavenumber k = 0.398L

and this is the wave would expect to see as it would outgrow all the others and dominate.
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