
1.  Introduction
Wildfire activity in the United States (U.S.) and across the globe has increased markedly over the last several 
decades (e.g., Balch et al., 2017; Dennison et al., 2014; Iglesias et al., 2022; Westerling et al., 2006). In the U.S., 
many of the recent wildfire seasons have involved long and intense burning periods, leading to the loss of life 
and property, as well as poor air quality (e.g., Buchholz et al., 2022) and reductions in solar energy production 
as a result of smoke generation (e.g., T. W. Juliano, Jiménez, et al., 2022). Global climate models suggest that 
the recent trend of more large-scale fire events will continue and even increase in the future (e.g., Abatzoglou 
& Williams, 2016; Yoon et al., 2015; Yue et al., 2013). As part of the complexity, the so-called wildland-urban 
interface (WUI) is rapidly growing (e.g., Burke et al., 2021; Radeloff et al., 2018) and, therefore, amplifying the 
direct threat of wildfires on daily human activities.

Several notable WUI fires have occurred over the past decade in the U.S., primarily in California, including the 
Tubbs Fire (2017; e.g., Coen et al., 2018; Mass & Ovens, 2019), Camp Fire (2018; e.g., Brewer & Clements, 2019; 
Mass & Ovens, 2021), Woolsey Fire (2018; e.g., Keeley & Syphard, 2019), and Thomas Fire (2017; e.g., Fovell 
& Gallagher, 2018). One commonality between these wildfires is that they were considered wind-driven fires, 
allowing them to expand rapidly and devastate nearby communities in their paths. In California, so-called “Santa 
Ana” (e.g., Raphael, 2003, and references therein) or “Diablo” (e.g., Liu et al., 2021) wind events are often asso-
ciated with destructive wind-driven wildfires (e.g., Nauslar et al., 2018; Smith et al., 2018). Wind-driven WUI 
fires are also a concern in regions outside of the U.S., including Australia (e.g., Cruz et al., 2012), France (e.g., 
Ganteaume, 2020), and Greece (e.g., Efthimiou et al., 2020).
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real-time management of active wildfires, it is critical that the scientific community can better predict WUI fire 
spread. In this study, we rely on multiple observational platforms, including the “Doppler on Wheels” radar, to 
investigate the performance of a state-of-the-art fire behavior model that links with a weather model during the 
Marshall Fire, which was a recent WUI fire that occurred in Colorado. While the modeling system performs 
well during the fire's initial propagation in fine fuels, it is unable to accurately predict spread in the built 
environment. While turbulence-resolving simulations can accurately represent atmospheric flow features, more 
reliable predictability of wildfire behavior in the WUI will require consideration of urban fuels and fire ember 
spotting.
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The Marshall Fire is an example of a catastrophic wind-driven, WUI fire event that occurred just outside of 
Boulder, Colorado, U.S. on 30 December 2021 (Fovell et al., 2022), causing two deaths and destroying more than 
1,000 buildings, leading to over $500 M in damages. The fire ignited near the Marshall Mesa in the presence of 
strong winds that exceeded 40 m s −1, and it began spreading rapidly in dry, fine fuels driven by intense, westerly 
winds. Approximately 1 hr after ignition, the fire transitioned into an urban conflagration, including “hopping” 
the six-lane Highway-36 via ember spotting. The large-scale meteorological setup favored a downslope wind-
storm along the Front Range (Fovell et al., 2022), which is a relatively common occurrence in this geographical 
region during the cold season (e.g., Durran, 1990; Whiteman & Whiteman, 1974).

In this study, we use observations and numerical simulations to examine the impact of the meso- and micro-scale 
meteorology on the Marshall Fire behavior. Specifically, we use a state-of-the-art numerical framework, the 
Weather Research and Forecasting (WRF) model coupled with a fire behavior model (WRF-Fire), as well as 
measurements from the Doppler on Wheels (DOW) radar system, to address the following fundamental questions 
related to the topic of wildfire-weather: (a) What were the observed and modeled atmospheric flow characteris-
tics during the Marshall Fire? And (b) How well does the WRF-Fire model reproduce the Marshall Fire spread 
in the WUI?

2.  Data and Methods
2.1.  WRF-Fire Model

The WRF model is a widely used numerical weather prediction system (Skamarock et al., 2019) proven to be a 
powerful tool for simulating the full range of atmospheric scales, including meso- and micro-scales (e.g., Mazzaro 
et al., 2017; Muñoz-Esparza et al., 2017; Rai et al., 2019). Here, we utilize WRF in a one-way nested, mesoscale 
to microscale configuration (e.g., Haupt et  al.,  2019) whereby the inner domain is turbulence-resolving. The 
WRF domains are positioned to capture the westerly inflow that plays an important role on the wildfire prop-
agation (Figure S1 in Supporting Information S1). To examine the Marshall Fire evolution, we conduct WRF 
simulations with a fire behavior model based on the Coupled Atmosphere-Wildland Fire Environment (Clark 
et al., 2004; Coen, 2013). This coupled fire-weather model is called WRF-Fire (Coen et al., 2013). Our model 
setup and physics options closely follow those used in recent studies by our team of the East Troublesome Fire 
(DeCastro et al., 2022) and the Camp Fire (Shamsaei et al., 2023), and additional details may be found in Text S1 
in Supporting Information S1.

2.2.  DOW Measurements

The DOW platform was deployed during the Marshall Fire to capture the three-dimensional smoke/ash plume 
and flow structures. Operating at 3-cm wavelength, the DOW is a mobile/quick deployable Doppler radar with 
high spatial resolution (50 m gate length and 160 m × 160 m beam size at 10 km range), allowing it to measure 
microscale structures (Wurman et  al.,  1997,  2021). During this deployment, the DOW operated mostly in a 
rastered Plan Position Indicator scanning mode, with elevation scans ranging from ∼0.5–23° (adjusted through-
out the deployment) above the horizon. Parameters derived from the DOW observations and relevant to this study 
include reflectivity, radial velocity, and spectrum width. More information about these parameters is provided in 
Text S2 in Supporting Information S1.

3.  Fire Spread in the WUI
The Marshall Fire had two reported initial ignition points, occurring at 18:08 and 19:00 UTC and approximately 
several 100 s of meters apart (see Text S3 in Supporting Information S1 for more information). Thus, in our 
WRF-Fire simulations, we first ignite two separate fires. Both ignition points were in dry, short grass fuels. 
During the early stages of the fire, the combination of fuels and strong (∼25 m s −1), westerly winds supported 
rapid fire growth in the Marshall Mesa area (magenta star in Figure 1). At 19:00 UTC, the initial burn region in 
the model takes on a finger-like structure, with spotting on the east and southern flanks as it approaches Highway 
36 (Figure 1).

According to Visible Infrared Imaging Radiometer Suite (VIIRS) fire detections at 19:25 UTC, the fire had spot-
ted across Highway-36 to cause secondary ignitions (Figure S3 in Supporting Information S1), but the simulated 
fire does not cross the highway via spotting until 19:45 UTC (cf. Figure 1), at which time another burning lobe to 
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the south originating from the second ignition has nearly reached the highway. Two snapshots from VIIRS shortly 
after, at 20:15 UTC and 21:00 UTC (Figure S3 in Supporting Information S1), show that the modeled leading 
edge is too slow and the north-south expansion is too narrow. During this ∼1.5 hr period, the intense westerly 
winds continue across much the region; however, the model shows weaker westerlies and even “reversed” flow 
intruding (further discussed in Section 4).

By mid-afternoon (22:05 UTC), the rapid fire spread is halted in the model (Figure 1) as it reaches the urban 
region, where non-burnable fuels are present in the model fuel layer (Figure S2 in Supporting Information S1). 

Figure 1.  Temporal progression of the Marshall Fire spread. The magenta star represents the approximate location of the initial fire ignitions, the red line represents the 
final observed perimeter, and the black line represents the WRF-Fire perimeter at the indicated time. The orange circles represent firebrand landing locations according 
to WRF-Fire. Flow transitions from supercritical to subcritical are shown by the blue diamonds. Also shown are 10 m wind arrows according to the key.
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The westerly, low-level flow is confined to the western potion of the area, with winds near the fire front opposing 
the original fire spread direction. This flow transition will be discussed further in Section 5. Nonetheless, around 
this time, the DOW reflectivity isosurfaces show active plume cores in two of the main fingers further north and 
east (Figure 2a), confirming that the model is unable to capture the rapid propagation across Highway-36.

Between 22:05 and 23:00 UTC, the model shows generally slower fire spread compared to previous hours, as it 
expands the burned region mostly to the north and south due to the relatively weak, variable winds (Figure 1). 
During this time, and over the next couple of hours, the radar reflectivity isosurfaces indicate that the fire 
becomes increasingly active in the middle finger (Figures 2b and 2c) before dissipating, while a new southern 
finger becomes more active (Figure 2d). Only by the evening (02:30 UTC) does the simulated burn area finally 
spread into Louisville on the north side of Highway-36 and toward the southernmost observed finger (Figure 1). 
In Section 6, we will discuss potential sources of error in the WRF-Fire simulations.

4.  Horizontally Heterogeneous Wind Field
The synoptic-scale and mesoscale meteorology during the Marshall Fire event fostered intense downslope winds 
along the Front Range (Fovell et al., 2022). A north-south band of strong, westerly flow (gusts >30 m s −1) was 

Figure 2.  Radar reflectivity isosurfaces showing plume evolution. Transparent Isosurfaces are rendered at −10, 10, 15, 20, 23, 26, and 27 dbZ with colors becoming 
increasingly red for higher values. The data window (UTC), is shown at the top of each panel. Also shown are the IR fire perimeter (red contour) and terrain elevation 
(gray shaded relief).
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positioned along the Boulder Foothills, where the plunging, downslope flow remained attached at the surface, 
including in the vicinity of the Marshall Fire ignitions. In contrast, many locations not too far to the east generally 
experienced weaker winds (gusts <20 m s −1) where the flow detached from the surface, as shown in Figure 1 
and in agreement with Fovell et al. (2022, their Figure 1). To evaluate the WRF-Fire model's ability to represent 
the spatially variable, low-level flow during the event, in Figure S4 in Supporting Information S1 we compare 
observed and modeled time series of the surface stations shown in Figure S1 in Supporting Information  S1 
and described in Text S4 in Supporting Information S1. By and large, the model performs better at the western 
stations, where strong, westerly winds persisted before the flow transitioned. Even still, WRF tends to underesti-
mate the strongest observed wind gusts of 40–50 m s −1 at CO1 and BLD. This result supports the aforementioned 
underestimation in model fire spread. Compared to the western area, both observations and WRF show much 
more variable wind speeds and directions east of the fire. Simulations of a downslope wind storm in the Wasatch 
Range showed similar spatial variability in the mesoscale flow (Lawson & Horel, 2015).

The horizontal structure and variability in the wind field is captured by the DOW radial velocity observations. 
Figure 3a shows the time-mean radial velocity for scans below 5°, revealing (a) the strong west-southwest winds 
across the fire, (b) a region of reversed flow, especially over the southern portions of the fire area, and (c) a 
subsequent return to west winds aloft and to the east. In Figure 3b, we also show the fraction of the time the radial 
wind is positive. These data show that within the time-mean reversed flow regions, many locations experience 
positive winds ∼50% of the time, suggesting that the winds were highly variable. As we will discuss in the next 
section, the flow variability is related to the presence of a hydraulic jump. Shown in both plots are also station 
observations (colored circles) that indicate the radial wind component and the vector wind during the averaging 
period (Figure 3a), as well as the fraction of time with positive winds at each site (Figure 3b). Overall, we find 
reasonable agreement between the radar and near-surface observations; however, some differences are expected 
because the height of the radar retrieval volume increases as the radial distance increases according to the DOW 
scan angle (not shown).

5.  Vertical Structure and Flow Evolution
Based on quasi-idealized simulations, Fovell et al. (2022) suggest that a “hydraulic jump-like feature” was present 
downwind of the strongest winds in the Boulder Foothills. To further explore this aspect of the atmospheric flow, 
we use model output and DOW observations. In Figure 4, we present east-west vertical cross-sections of the zonal 
wind component. Each panel represents a different snapshot in time, with the times corresponding to those shown 
in Figure 1. Throughout the event, the low-level, downslope winds upstream of the fire (west of ∼105.3°W) are 
consistently strong and capped by a strong inversion where winds diminish quickly with height. This band of 
intense winds continues eastward, bringing strong westerlies into the Boulder Foothills during the early stages of 

Figure 3.  (a) Time-mean radial velocity data with station observations showing mean wind vectors and mean radial velocity (color shaded). (b) Fraction of the time 
with a positive radial wind component. Both figures also show the final observed perimeter (solid black contour).
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the Marshall Fire, and rising with height toward the east (Figure 4). As a result, the atmospheric flow supports 
the fire's rapid advancement around 1900 UTC (cf. Figure 1). Over the ensuing hours, the wind maximum retreats 
westward, and, eventually, the vertical structure, which is well-defined by strong thermal stratification and weak 
vertical motion, breaks down into a more chaotic structure to the east (Figure 4). The strong inversion erodes 
where the intense winds diminish, as the wavy isentropes (solid green lines) suggest strong vertical mixing within 
the lower-levels. In the transition zone, a hydraulic jump is evident with a sharp decrease, and even complete 
reversal, in the zonal winds and vertical displacement of the isentropes. Characteristics of the hydraulic jump 
are found to be insensitive to the fire's feedback on the atmosphere due to the strong mesoscale forcing (Text S5, 
Figures S6–S8 and S10 in Supporting Information S1).

The transition from strong flow in a shallow boundary layer to weaker winds as the boundary layer deepens 
further downwind, with turbulence production in between, are classical characteristics of a hydraulic jump (e.g., 
Ball, 1956; T. W. Juliano et al., 2017). To probe the dynamical support for the presence of a hydraulic jump, we 
conduct a Froude Number (Fr) analysis along the vertical cross-sections shown in Figure 4. Results presented 
in Figure S5 in Supporting Information S1 indicate a transition from supercritical (Fr > 1) to subcritical flow 
(Fr < 1)—a well-known requirement for the presence of a hydraulic jump. Upstream Fr values between 2 and 4 
(Figure S5 and Text S6 in Supporting Information S1) suggest a hydraulic jump with a roller (e.g., Chanson, 2009), 
whereby much of the mean kinetic energy is converted into turbulent kinetic energy (TKE). In this particular case, 
the WRF model simulates an extraordinary transition, with maximum TKE values exceeding 200 m 2 s −2 due to 
the strong decay in intense westerly winds (Figure S9 in Supporting Information S1).

Figure 4.  East-west vertical transects (latitude of 40.04°N) showing the U-component of the wind speed according to the colorbar, along with isentropes (potential 
temperature contours) every 2 K in green. The dashed magenta line represents the furthest eastward progression of the fire front in the whole domain. Also plotted is the 
location of the flow transition (Fr = 1; dotted magenta line). Gray shading represents the terrain profile. Times shown are the same as in Figure 1.
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The hydraulic jump and subsequent gravity wave structures in Figure 4 are readily apparent in a cross section 
of the radar reflectivity spanning 2202–2226 UTC (Figure 5). Specifically, the DOW data show a leading wave 
linked to the fire's updraft that is embedded in the hydraulic jump region followed by a subsidence region (i.e., 
diminishing plume heights) and a second wave crest (Figure 5a). Spectrum width measurements (Figure S11 
in Supporting Information S1) show maximum values in the primary plume with a secondary maximum in the 
downstream wave (qualitatively similar to the TKE field from WRF; cf. Figure S9 in Supporting Information S1). 
The contemporaneous isentropes extracted from WRF, with the strong thermal inversion acting as a lid for the 
vertical extent of the modeled smoke plume (Figure S12 in Supporting Information S1), suggest that the simu-
lation underestimates the injection height of smoke and ash in the leading wave. This discrepancy may be due to 
differences in fire spread rates or a lack of urban fuels in the model: the combustion of urban fuels, which have 
high fuel loads (e.g., O(100 kg m −2); Bush et al., 1991) relative to the upwind grasses O(0.1–1 kg m −2), may have 
produced more intense heat release in reality compared to what was simulated. Nonetheless, the structure of the 
second wave agrees fairly well between observations and simulations. Also shown is the downwind variation of 
the column maximum radar reflectivity (Figure 5b), which is a measure of plume dilution and debris fall out. The 
maximum reflectivity (uncorrected) is ∼30 dbZ, with a logarithmic decay to the east. The sharpest reduction in 
reflectivity is close to the main updraft, suggesting the potential for ember fall out in this region.

6.  Discussion and Conclusions
In this article, we present observations and numerical model simulations of the Marshall Fire in December 2021, 
which spread rapidly in the WUI due to strong, downslope winds along with dry, fine fuels and ember spotting. 
Such intense winds in this region occur nearly every year (NOAA Physical Sciences Laboratory, 2022), suggest-
ing that the meteorological conditions were not uncommon. Measurements from surface stations and satellite 
show that the simulated fire propagates too slowly through wildland fuels at the beginning of the event, likely due 
to a general underestimation of the strongest wind speeds. Similar underestimation is also seen during Sundowner 

Figure 5.  (a) Time and meridional maximum radar reflectivity cross section for the 2202–2226 UTC interval. Reflectivity 
values are shaded, with potential temperature contours from the Weather Research and Forecasting model (contours every 
1 K, bold and labeled every 5 K). Gray shading represents the terrain profile. (b) Column maximum radar reflectivity as a 
function of longitude.
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events in wildfire-prone southern California (e.g., Cannon et al., 2017), highlighting modeling challenges related 
to complex topography.

For the first time, the complex three-dimensional atmospheric flow structure during the Marshall Fire is revealed 
through the DOW radar and turbulence-resolving WRF-Fire simulations. The radar retrievals illustrate substan-
tial horizontal variability in the low-level wind field, in addition to vertical plume structure embedded in a 
robust hydraulic jump. WRF-Fire suggests that the highly variable, low-level winds are related to the hydraulic 
jump. In this jump region, the flow transitions from intense westerlies to much weaker westerlies or even a shift 
to easterlies, ultimately affecting the Marshall Fire spread rate and direction. It is likely that the small errors in the 
modeled microscale flow variability contribute to the differences in observed and modeled fire spread rate and 
direction as the fire approaches the towns of Superior and Louisville. Nonetheless, additional sources of model 
uncertainty (e.g., fuel moisture) should be more deeply examined in future fire studies to better understand the 
impact on fire spread and behavior.

Even though the model produces generally encouraging results, there are two main shortcomings related to the 
fire module in WRF that should be discussed. First, while the most up-to-date version of WRF-Fire as of this 
writing (version 4.4) contains a firebrand parameterization, it does not ignite spot fires, but rather provides only 
a likelihood of spot fire ignition. Rapid wildfire spread is often caused by embers generating new ignitions ahead 
of the main fire front (e.g., N. P. Lareau et al., 2022). The Marshall Fire was able to cross Highway-36, which is 
six-lanes wide. Such advancement is possible only through ember spotting. Therefore, a WRF-Fire simulation 
without additional manual ignitions, such as in this study, is not able to produce further fire spread.

Second, the WRF-Fire model must be improved to account for WUI fuels and related fire propagation in the built 
environment. During post-fire investigations of the Marshall Fire, the Institute for Business and Homes Safety 
found evidence that wooden fences falling between homes in Superior and Louisville were a primary cause of fire 
spread (Reppenhagen, 2022). At present, the WRF-Fire model contains fuel categories (based on Anderson 13) 
strictly intended for fires in the wildland and a rate of spread parameterization (based on Rothermel) developed 
using empirical laboratory fits to account for the effects of wind and slope. However, given the increasing trend 
in WUI fire occurrence, fuel maps including WUI materials, as well as improved representation of fire spread, 
should be developed for coupled fire-atmosphere models. As an additional step, more complex models (i.e., with 
full representation of combustion processes) combined with machine learning could be leveraged to improve fire 
spread parameterizations within coupled fire-atmosphere models. Lastly, we highlight that urban models (e.g., 
Masoudvaziri et  al., 2021) are currently being used to help inform WUI fire spread, with emerging graphics 
processing unit-accelerated LES methods (e.g., Sauer & Muñoz-Esparza, 2020) becoming increasingly attractive 
platforms. The WUI challenge highlights the urgent need to better understand the complex interactions between 
humans and the built environment, weather, and wildfire, and ultimately develop more effective solutions to 
predict wildfire behavior and risk.

Data Availability Statement
Surface weather station data and model outputs (https://doi.org/10.7910/DVN/M6WCBT; T. Juliano et al., 2022) 
as well as VIIRS fire detection retrievals (https://doi.org/10.7910/DVN/PR6XDM; T. Juliano & Shamsaei, 2022) 
are stored on Harvard Dataverse. DOW measurements are available at (https://doi.org/10.48514/JKJ0-TE44; 
Wurman & Kosiba, 2023) through Zenodo. The WRF v4.4 code used for the simulations is publicly available 
on Github (https://github.com/wrf-model/WRF/tree/release-v4.4). Codes for the model (https://doi.org/10.7910/
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