
1

ATSC 212

FORTRAN - part 2

Roland Stull
roland.stull@ubc.ca

revised July 2024

mailto:roland.stull@eoas.ubc.ca

2

Topics Today

l Audiences of your code

l Functions: intrinsic and subroutine functions

l “alias”, a linux shortcut

l Modules

l More string manipulation

l More file handling

l More I/O

3

Write Your Code
for 3 audiences
1. The programmer & colleagues

l Give variables meaningful names
l Always add comment lines in the code
l Declare all variables, and indicate units

2. The user
l As program runs, display status on screen
l Interact with user: prompt -> response
l Plan to handle errors in user input

3. The computer
l Code must execute cleanly.
l Sometimes must also be fast.

Set-up your computer
l Activate your terminal window, and your window for writing source

code (else be prepared to use vi from your terminal window). If you
need to compile and run on a server, finish logging into that server.

l Start with your own working copy of wp12.f95 from last time.
Assuming you already successfully compiled this code to create an
executable runwp12, then run it again to remind you where we left
off.

l However, if you didn’t get it working at the end of the last session, I
can provide you with my copy of wp12s.f95 that you can use as a
starting point for the next lessons.
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/wp12stull.txt
(then change the name from wp12stull.txt to wp12.f95 .)

l If you use my version, please compile and run it, and fix it if
needed.

4

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/wp12stull.txt

5

Alias - a linux shortcut
First, from the linux command line,
define an alias, such as:
 alias g12=‘gfortran wp12.95 -o runwp12’

To use this alias, on the linux command line type:
 g12

Which will automatically compile the program, and produce an
output file called “runwp12”.

To run your program, type in the command line:
 ./runwp12

6

…more I/O: Formatted READ
!Example: Reading real numbers:
 character (len=30) :: fmt !name of string holding format
…
 fmt = “(F7.1, F7.0, 2F7.1)”

 read(1,fmt) P, z, T, Td

! From unit 1, reads 4 numbers in a single line, each number
! occupying 7 columns (including blanks).
!==
!Fn.d is for real numbers using n columns, of which decimal values are in
! last d. Example: F10.3 reads or prints bbb101.325
!And if a negative sign is needed, it uses up one of the columns.
! example: F8.2 reads or prints b-273.15
!So when you plan the size if n, don’t forget “.” and “-”.
!ESn.d prints real numbers in sci. notation: ES12.3 does bbb2.990E+08
!an prints a character string of length n. Also if n is omitted,
! then a adapts to any size string. Example: a4 prints “nice”
!In prints an integer, within n columns: Ex: I5 prints bb365
!Errors: If number is too large to print in n columns, then “******”

7

… more I/O: Formatted WRITE
!Example:
 character (len=30) :: fmt1, fmt2 !name of strings holding format
 character (len=1) :: tab = achar(9) !ascii tab character
 real, dimension(5) :: T !an array of temperatures
 real :: x, y, z !real numbers
 fmt1 = “(2(F12.4, a1) , F10.0 , I5)”
 fmt2 = “(a , a)”
 write(2,fmt1) x, tab, y , tab, z, nlayers
 write(2,fmt2) “This file is :”, filename
 write(2,”(5ES15.2)”) (T(i), i=1,5) !contains an implied do loop

!Fn.d prints real numbers using n columns, of which decimal values are in
! last d. Example: F10.3 prints bbb101.325
!And if a negative sign is needed, it uses up one of the columns.
! example: F8.2 prints b-273.15
!So when you plan the size if n, don’t forget “.” and “-”.
!ESn.d prints real numbers in sci. notation: ES12.3 does bbb2.990E+08
!an prints a character string of length n. Also if n is omitted,
! then a adapts to any size string. Example: a4 prints “nice”
!In prints an integer, within n columns: Ex: I5 prints bb365
!Errors: If number is too large to print in n columns, then “******”

...more READ/WRITE formats
l nX in the format statement skips n characters in

input, or writes n blanks in output.
l Tm in the format statement tabs to the mth

character.

l Examples:
 real :: z, speed
 character (len=30) :: fmt = "(T45,F7.1,7X, F7.1)"
 read(1,fmt) z, speed
which tabs to the 45th character, then reads a real number
with F7.1 format, then skips 7 characters, and reads another
real number. Can be use for writes as well a reads.

8

9

Do Exercise 13 in HW-fortran2

l This exercise and most others are given at
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-
2/fortran2.html

l Start by doing a SaveAs (or cp in linux) to
save the old version 12 as wp13.f95 .

l Then, follow along with instructor, learning
more about reading and writing formatted
arrays.

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html

10

Modules
!A way of passing variables between different subroutines.
!Modules are global to the program.
!Example. First, before your main program, define the module:
 module rainmod
 character(len=100) :: title !a character variable
 real, dimension(120) :: precip !an array of real numbers
 end module rainmod

! Then, use it in any main program or subroutines where you need it:
 program precipitation
 use rainmod
 implicit none
 title = “My favorite rainy day”
 …
 call showtitle
 end program

 subroutine showtitle
 use rainmod
 implicit none
 integer :: i
 write(*,*) title
 do i = 1,120
 precip(i) = 0.05*real(i)
 enddo
 end subroutine showtitle

11

Do Exercise 14 in HW-fortran2

l Again, This exercise and most others are given at
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-
2/fortran2.html

l Follow along with instructor, learning about modules. A
module is like a clipboard in a Mac or Windows gui. But
in a module you can have many items copied to the
clipboard and you can access them by name. The data
stored in modules can be accessed from any subroutine
that uses the module.

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html

12

Intrinsic Functions
(already built in to fortran libraries)

Here are some intrinsic functions. See on-line Tutorial #3 for more.
 sin(x) !expects x in RADIANS
 sind(x) !expects x in DEGREES
 atan2(x,y) !arctan of angle with (x,y) coord.Returns RADIANS
 log(x) !this is really the natural log (ln) (base e)
 log10(x) !here is the common log (base 10)
 exp(x) !e to power x
 sqrt(x) !square root of x
 abs(x) !absolute value of x
 real(I) !converts I to a real-number type
 int(x) !converts x to an integer type
 max(a, b, c, …) !finds the max value from a list

Examples of use:
 y = cos(alpha)
 z = sqrt(hippopotamus)
 xmax = max(x1, x2)

13

Intrinsic Functions
(already built in to fortran libraries)

gfortran users manual has full list of intrinsic functions and
other info:

https://gcc.gnu.org/onlinedocs/gcc-
14.1.0/gfortran/Intrinsic-Procedures.html

14

Function subroutines
(create your own functions)

real function yst(P) !gives name and type of function
 uses soundmod !you can access modules if needed
 implicit none !always use strong typing
 real, intent(in) :: P !tells compiler that P is input
 real, parameter :: Po = 100.0 !set a constant
 yst = log(Po/P) !finds the ln ordinate on skew-T
 end function yst

 real :: pressure = 85 !pressure is 85 kPa
 real :: yst !always declare type for function
 real :: y !ordinate of skew-T diagram
…
 y = yst(pressure) !here is where function is called

Example of definition of function:

Example of function use:

15

Do Exercises 15 - 17 in HW-
fortran2
l Again, This exercise and most others are given at

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-
2/fortran2.html

l For exercise 15, follow along with instructor, learning
about user-defined functions.
What is the difference from subroutines?

l Try exercises 16 & 17 on your own. (Stull will follow
along after you.)

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html

16

String Manipulation:
 tab , trim, concatenation

!To print an ascii tab character to the output file
 character (len=1) :: tab = achar(9) !ascii tab character
…
 write(2,*) x, tab, y, tab, z !easy to read into Excel

!To trim off any trailing blank characters
 character(len=20) :: filein
 character(len=30) :: fileout1, fileout2
 write(*,”(a)”,advance=“no”) “The input file name is: “
 read(*,*) filein !suppose the user typed burnaby
 fileout1= filein // “out.txt”
 write(*,*) fileout !gives: “burnaby out.txt”
 fileout2= trim(filein) // “out.txt” !gives:”burnabyout.txt”

!where // is the concatenation operator (combines two
!strings into a longer string)

17

…more string manipulation:
 index, substrings

!Suppose a character string is “fred.txt”, and you want
!the program to create a new string “fredout.xls”.
 character(len=50) :: inname = “fred.txt”
 character(len=60) :: outname
 integer :: j

!First, use intrinsic function index to find the location
!of the “.” in the name.
 j = index(inname,”.”)
!for example, in “fred.txt”, the “.” is the 5th character.

!Use substrings to pick out a portion of a whole string;
!e.g., inname(2:4) corresponds to the letters “red”.
 outname = inname(1:(j-1)) // “out.xls”

!Thus:
 write(*,*) outname
!would print:
 fredout.xls

18

…more File Handling: output
!Creating a new file to hold your output:
 character (len=30) :: filename !name of file to create
 integer :: ios !will hold error status
 …
 filename = “myfile.txt” !set file name or ask user
 open(2, file=filename, status=‘replace’, iostat=ios)
 … !don’t forget to take action if ios .ne. 0

!Writing to that file:
…
 write(2,*) x, y ,z, I
 write(2,*) “This file is :”, filename

!Don’t forget to close the file when you are done
 close(2)

!Note: reserved unit #’s: 5=keyboard input, 6=screen output
!Note: units have global scope within any program. Can open
!in one subroutine, and use in many others, & close in other.

19

Do Exercise 18 in HW-fortran2

l Again, This exercise and most others are given at
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-
2/fortran2.html

l Follow along with the instructor to create a new output
file.

https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-2/fortran2.html

20

Other Useful Stuff-not covered

l Linking

l "Make" files

l Dynamic allocation of array sizes

l Pointers

l Designing code for multi-processors

21

Lab & HW - Fortran 2
In Lab:
l Continue now with exercise 18 in lab. Talk with

your neighbor on strategies on how to do this. Test
your code and experiment.

l If you have compiler errors, use the link from the
Lab web page to see how to understand compiler
error messages.
https://www.eoas.ubc.ca/courses/atsc212/labs/fortran-
1/error-msg.html

l On your own, do exercise 19 as homework.

Any Questions?

