A12f)

(3.5 marks)

Given the pressure gradient magnitude (kPa/1000km) below, find geostrophic wind speed for a location having fc = 1.1x10^-4 /s and rho = 0.8kg/m^3.

f) 6

Given:	fc = rho = delta_P / delta	1.10E-04 /s 0.8 kg/m^3 a_d =	6 kPa/1000km
Find:	G = Geostrophic w	? m /s rind	
Using equati	on 10.28:	$G = \left \frac{1}{\rho \cdot f_c} \cdot \frac{\Delta P}{\Delta d} \right $	
Convert ∆P / The 'kilo' (x1 kPa / 1000kr	Δd from kPa/10 000) on top and n = Pa / 1000m.	000km to Pa/m: I bottom can cancel eacl To get this into Pa / m,	h other out, so divide by 1000.
	$\Delta P / \Delta d =$	0.006 Pa/m	
G =	68.18	m/s	

Check: Units ok. Physics ok.

Discussion: Note that G is proportional to the PGF. When Δd (spacing between isobars) is smaller, PGF is larger and so is G.

A14f) (3 marks) At the radius (km) given below from a low-pressure center, find the gradient wind speed given a geostrophic wind of 8 m/s and given fc = 1.1x10^-4 /s. f) 1000.

 $\frac{G}{\cdot R}$

Given:	R = G = fc =	1.	1000 km 8 m/s 10E-04 /s	
Find:	Mtan =	?	m/s	
Using eq. 10	D.34a:	$M_{\text{tan}} = 0$	$5 \cdot f_c \cdot R \cdot \left[-1 + \right]$	$1 + \frac{4}{f_c}$

Convert R(km) into R(m):

1000000

Mtan =	7.49 m/s

Check: Units ok. Physics ok.

R(m) =

Discussion: Gradient wind speed around a low is slower than the geostrophic wind because of the imbalance between the PGF and the Coriolis force caused by the curvature of the flow.

Chapter 11

A14f) (3.5 marks)	A14. Find the (U , V) wind 300 km and f) 20, 50	e relati speed (Δy = 60	ve vorticity (s–1) f m s–1), across dis 0 km respectively	for the change of stances of Δx = given below.
	Given:	ΔU = ΔV = Δx = Δy =		20 m/s 50 m/s 300 km 600 km
	Find:	ζr =	?	/s
	Use eq. 11.2	0:	$\zeta_r = \frac{\Delta V}{\Delta x} - \frac{\Delta U}{\Delta y}$	

Convert $\Delta x(km)$ and $\Delta y(km)$ into $\Delta x(m)$ and $\Delta y(m)$:

Δx (m) =	300000 m
Δy (m) =	600000 m

ζr = 0.000133333 /s

Check:Units ok. Physics ok.Discussion:Positive sign due to cyclonic motion

A17f) (4 marks)	If the relativ following la	ve vorticity is 5x10 [,] titude: f) 65 deg.	^-5/s, find	the absolute vorticity at the
	Given:	ζr = φ =	5.00E-05 65	/s deg
	Find:	ζa = ?		/s
	Use eq. 11.2	3: $\zeta_a = \zeta_r + f_c$	C	
	where fc = 2	*Ω*sinφ: 2Ω =	1.46E-04	/s
	fc =	0.000132140 /s		
	ζa =	1.82E-04 /s		
	Check: Discussion:	Units ok. Physics Fc increases with hence, absolute v The 65th parallel Greenland, and is Circle.	ok. latitude ar vorticity wi passes thr s almost in	nd II be a maximum at the north pole. ough the Arctic
A18f) (3.5 marks)	If absolute v layer of thic	vorticity is 5x10^-5 kness (km) of: f) 3	/s, find th	e potential vorticity (/m*s) for a
	Given:	ζa = Δz =	5.00E-05 3	/s km
	Find:	ζp = ?		/(m*s)
	Use eq. 11.2	4: $\zeta_p = \frac{\zeta_r + f_c}{\Delta z}$	<u>-</u> = cons	tant

where $\zeta r + fc = \zeta a$ from eq. 11.23 or A17e.

Convert $\Delta z(km)$ into $\Delta z(m)$:

3000

ζp = 1.67E-08 /(m*s)

Δz (m) =

Check: Units ok. Physics ok.

Discussion: The potential vorticity is a useful definition in determining how a column of air would respond to stretching in order to conserve its potential vorticity in the absence of turbulent drag and heating. This reasoning is thought to influence storm development in the lee of the Rocky Mountains.

A19f) (6 marks)

The potential vorticity is 1x10^-8 /(m*s) for a 10 km thick layer of air at latitude 48 degN. What is the change of relative vorticity (/s) if the thickness (km) of the rotating air changes to: f) 7?

Given:	ζp = Δzi = Δzf= φ =	1.00E-08 10 7 48	/(m*s) km km deg
Find:	Δζr =	?	/s
Use eq. 11.24	$\zeta_p = \frac{\zeta_r}{\zeta_r}$	$\frac{+f_c}{\Delta z} = \operatorname{con}$	stant
where fc = 2*	⁻ Ω*sinφ: 2Ω =	1.46E-04	/s
fc =	1.08E-04	/s	
Convert ∆zi(k	m) and Δzf(km) Δzi (m) = Δzf (m) =) to ∆zi(m) and 10000 7000	d ∆zf(m):
ζri =	-8.50E-06	/s	

Since we know ζp is constant, we can calculate new ζr with new Δz :

ζrf = -3.85E-05 /s

Therefore the change in relative vorticity is:

$\Delta \zeta I = \zeta I I - \zeta I I = -3.00 L - 03 / 3$	A7r - 7rf - 7ri2 00E_05 /s
---	----------------------------

Check: Units ok. Physics ok.
Discussion: For a fixed latitude, the planetary vorticity will not change. When the thickness decreases from 10km to 7km, the result is the generation of negative relative vorticity, causing the wind to spin faster in the clockwise direction (or slower in the counter-clockwise direction).

Chapter 14

A18b)

(2 marks)

Solution: See attached figure. Ch14_18b z: 0,1,2,3,4,5,6 (km) b. (100,5),(120,10),(160,15),(220,25),(240,30),(250,33),(250,33)

Check: Curve looks reasonable, similar to Fig. 14.62b). **Discussion:** The hodograph shows a view of the change in wind speed and direction with altitude. The sounding data given is showing an increase in the winds with height. These conditions favour multicell thunderstorms.

A23) (3 marks)

Graphically, using your hodograph plot from exercise A18, plot the 0 to 6 km mean shear vector (m/s).

Solution: See attached figure. Vector plotted under wind vectors

Mean shear direction = imaginary line connecting point 0 to point 6

Mean shear magnitude (roughly) 5.35714286

Check: Looks reasonable compared to textbook vectors **Discussion:** The hodograph allows a very easy way to do the vector math to find the mean shear vector, even if the surface wind is not 0 m/s.

A28) (3.5 marks) Graphically, using your hodograph plot from exercise A18, find the mean environmental wind direction (deg) and speed (m/s), for normal storm motion.

Solution: See attached hodograph. X

speeu –	10.05 11/5		
speed -	16 63 m/s		
speed (m/s)	16.63494772		
dir =	222.13 deg		
dir (deg)	222.1320812		
U=	-12.3364829 m/s	V=	-11.159421 m/s
Method 2)	Vector sum method		
Method 1) OR	Approximate by findi	ng center of mass.	

Check: Looks to be near center of mass

Discussion: For a normal thunderstorm, under these environmental wind conditions, the general movement of the storm will move from the SW at a speed of 16.63 m/s. This speed corresponds to roughly 60 km in one hour.

motion" from exercise A28 (based on hodograph from A18), use Internal Dynamics method on your hodograph to graphically estimate the movement (i.e. direction and speed) of Right-and Left-moving supercell thunderstorms.

Internal Dynamics method:

- 1) Approximate the 0.25 to 5.75 km layer shear vector using the 0 to 6 km mean shear vector
- 2) Draw line perpendicular to mean shear vector
- 3) R and L are long this line, 7.5 m/s from the center of mass
- 4) For right-moving supercell thunderstorms, estimated movement:

direction =	255 deg
speed =	14 m/s

For left-moving supercell thunderstorms, estimated movement:

direction =	210 deg
speed =	20 m/s

Given the hodograph shape, the right moving super cells would dominate. (See Fig. 14.62)

Check: L and R points look similar to textbook hodographs

Discussion: Wind shear is only one of the main ingredients in the formation of a thunderstorm; others include the amount of available moisture, instability, and a trigger mechanism that will create uplift.

