ATSC 201 Fall 2024 Homework 1 Answer Key Total mark out of 25 Chapter 1: A1f, A3f, A5f, A6f, A9f, A14f, A15f

Chapter 1

Find the wind direction (degrees) and speed (m/s), given the A1f) (U,V) components: f) (5,20) m/s (4 marks) Given: U = 5 m/s V = 20 m/s Find: alpha (wind direction) M (wind speed) Using eq. 1.1: $M = (U^2 + V^2)^{0.5}$ Using eq. 1.2a: alpha = 90deg - (360deg/C)*arctan(V/U) + alpha0 C = 360 deg if U > 0 alpha0 = 180 deg M = 20.6155281 m/s

M =	20.62 m/s
alpha =	194.04 deg

Checks: Units ok. Physics ok.Discussion: The wind is coming from the SSW with a magnitude of 20.62 m/s.

A3f)	to local ti	me in your own time zone:	f) 15:15	
(3 marks)	Given:	15:15 UTC		
	Find:	local time		

	Using eqs. fr	om Table 1- DT = UTC - ST = UTC -	beta			
	Vancouver's		s "U" (Paci ⁻			
		beta =		7:00 PDT		
	Currently, lo	alpha = cal time is P	DT.	8:00 PST		
	DT =	8:	15 PDT			
	for partial m	arks: ST =		7:15 PST		
	Checks: Discussion:	Units ok. Vancouver 7 hours be		•	aylight Tin	ne, so it is presently
A5f) (2.5 marks)	Find the pre an average 1			lowing height	s above s	ea level, assuming
Given:	z (m) =		5 km	"="		5000 m
		avg T =		250 K		
	Find:	Ρ	?	kPa		
	Using eq. 1.9)a:				
	0	P = Po * e'	^(-(a/T)*z)			
	where:	Po =		3250 kPa		
		a =	Ĺ	0.0342 K/m		
	P =	51	L.1 kPa			
	Checks: Discussion:	Units ok. P At 5000m				

A6f) (3 marks)	of air that is	•	rea of 1 square me	ea, and consider a column ter. What is the mass of ure is 30 kPa
	Given:	Pbottom = Ptop = A =	30 kPa 0 kPa 1 m^2	
	Find:	Δm = ? mass of air betweer	kg Pbottom and Ptop	I
	Using eq. 1.	11: Δm = (A/g)*(Pbotto	n - Ptop)	where g = 9.81 m/s^2
	Convert Pbc	ottom(kPa) and Ptop(k Pbottom = Ptop =	Pa) to Pbottom(Pa) 30000 Pa 0 Pa	and Ptop(Pa):
	Δm =	3058.10 kg		
	Checks: Discussion:	Units ok. Physics ok This is a calculation that exists over 1 so	of the air mass abo	ve 30 kPa pressure level a.
A9f) (2.5 marks)	Discussion:	This is a calculation	of the air mass abo quare meter of area	·
•	Discussion:	This is a calculation that exists over 1 so	of the air mass abo quare meter of area	·
•	Discussion: Convert the	This is a calculation that exists over 1 so following temperatu	of the air mass abo quare meter of area res: f) 250 K = ?°F	·

T°F = -9.67 °F

Checks: Units ok.

Discussion: -9.67°F is colder than the coldest temperature ever recorded at the Vancouver Intl airport

A14f)	What is the	geopotentia	I height and ge	eopotential,	
(4.5 marks)	given the ge				
Given:	z =		2 km	=	2000 m
	Find:	Η = Φ =	? ?	m m^2/s^2	
	Using eq. 1.1 where the ra	H = Ro*z /(-	6.766km = 6,356,766m 6 m	I.
	And using ec		where g = 9		
		H =	1999.3709	5 m	
	Η = Φ =	1999.3 19613.8	37 m 83 m^2/s^2]	
	Checks: Discussion:		nce between t	he geometric height ar s negligible at 2000m.	ıd
A15f) (5.5 marks)			nospheric tem leight: e) 5km	perature, pressure, an ?	d density at the
	Given:	H =		5 km	
	Find:	T =	?	degC	

P =	?	kPa
ρ=	?	kg/m^3

Using eqs. 1.16 for H < 11km: T = 288.15-6.5*H

T =	255.65 K
	-17.50 degC

Using eq. 1.17 for H < 11km: P = 101.325*(288.15/T)^[-5.255877]

Using and rearranging eq. 1.18: $\rho = P \ / \ Rd^*T$

where Rd = 0.287053 kPa*m^3 / K*kg gas constant for dry air

0.73611546 kg/m^3	ρ=
-------------------	----

Checks: Units ok. Physics ok.

Discussion:

At 5km, the air is noticeably colder and lower pressure and density