ATSC 201 Fall 2024 Chapter 8: A1f, A4f, A7f, A8f

Total marks out of 11.5

Chapter 8	
A1f) (2.5 marks)	Using Fig. 8.4, identify whether the following (µm) are in a window, dirty window, shoulder, or opaque part of the transmittance spectrum, and identify which sketch in Fig. 8.2 shows how the Earth would look at that wavelength. [Hint: transmittance of ≥ 80% indicates a window.] f) 1.37
	Solution:

1.37 μ m is in a dirty window.

This wavelength has relatively low transmittance so would look like Fig 8.2 f.

<u>Discussion</u>: A 1.37 μ m wavelength is in the infrared spectrum. There is significant molecular emittance and some molecular scattering at this wavelength, leading to transmittance of ~15%. This means that the satellite sees the earth and clouds quite faintly.

A4f) (2.5 marks)

Find the brightness temperature for the following wavelengths (μ m), given a radiance of 10^(-15) W/(m^2 * μ m *sr): f) 4.5

Given:	λ (μm) =	4.5
	Βλ =	1E-15 W/(m^2 * μm * sr)

?

Find:

Use eqn. 8.2:
$$T_B = \frac{c_2 / \lambda}{\ln\left(1 + \frac{c_{1B} \cdot \lambda^{-5}}{B_\lambda}\right)}$$

TB =

where: c1B = c2 =

1.19E+08 W*m-2*μm4*sr-1 1.44E+04 μm*K

К

тв =	70.09 K	
	-203.06 °C	

Check: Units ok. Physics ok.

ATSC 201 HW 11

Discussion: The radiance given in this question is very small so the resulting brightness temperature is also small. If the wavelength was smaller, we would get a larger brightness temperature because shorter wavelengths carry more energy.

A7f) (3 marks)	For the following altitudes (km) above the Earth's surface, find the sate orbital periods: f) 10,000.			e, find the satellite	
	Given:	satellite altituc	le =	10000 km 10000000 m	
	Find:	t_orbit = ?		S	
	Use eqn. 8.	8: $t_{orbit} = \frac{2}{2}$	$\frac{\pi \cdot R^{3/2}}{\sqrt{G \cdot M}}$		
	where:	G = M =	6.67E-11 5.97E+24	N*m^2/kg^2 kg	
	r_Earth =	6378 ki	m	6378000 m	
	R = radius c	of Earth + satellite	e altitude =	16378000 m	
	t_orbit =	20856.03 s 5.79 h	r]	

Check: Units ok. Physics ok.

Discussion: Satellites at higher altitudes move slower because they need less energy to stay in orbit.

A8f) What shade of grey would the following clouds appear in visible, IR, and (3.5 marks) water-vapor satellite images? f) stratus

Given:	stratus cloud
Find:	Shade of grey in visible, IR, and
	water-vapor satellite images.

VIS:	White during the day.
IR:	Dark gray becase low altitude and warm temperature
wv:	invisible because moisture not reaching the upper atmosphere

Discussion: The different shades of grey in different satellite images is indicative of the different wavelengths being picked up by that satellite channel.